Abstract: Grasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents a data-driven oriented methodology to model the grasp space of a multi-fingered adaptive gripper for known objects. This method relies on a limited dataset of manually specified expert grasps, and uses variational autoencoder to learn grasp intrinsic features in a compact way from a computational point of view. The learnt model can then be used to generate new non-learnt gripper configurations to explore the grasp space.
Popularity: This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the
underlying citation network.
Influence: This indicator reflects the overall/total impact of an article in the research community at large, based on the
underlying citation network (diachronically).
Citation Count: This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in
the research community at large, based on the underlying citation network (diachronically).
Impulse: This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation
network.
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more