Abstract: Despite the recent great success of the sequence-to-sequence paradigm in Natural Language Processing, the majority of current studies in Semantic Role Labeling (SRL) still frame the problem as a sequence labeling task. In this paper we go against the flow and propose GSRL (Generating Senses and RoLes), the first sequence-to-sequence model for end-to-end SRL. Our approach benefits from recently-proposed decoder-side pretraining techniques to generate both sense and role labels for all the predicates in an input sentence at once, in an end-to-end...
(read more)