Abstract: This paper introduces the largest connected subgraph game played on an undirected graph $G$. In each round, Alice first colours an uncoloured vertex of $G$ red, and then, Bob colours an uncoloured vertex of $G$ blue, with all vertices initially uncoloured. Once all the vertices are coloured, Alice (Bob, resp.) wins if there is a red (blue, resp.) connected subgraph whose order is greater than the order of any blue (red, resp.) connected subgraph. We first prove that Bob can never win, and define a large class of graphs (called reflection graphs...
(read more)
Topics: 
Combinatorics
Discrete mathematics