2022 •
A multi-messenger study of the blazar PKS 0735+178: a new major neutrino source candidate
Authors:
N Sahakyan, P Giommi, P Padovani, M Petropoulou, D Bégué, B Boccardi, S Gasparyan
Abstract:
The blazar PKS 0735+178 is possibly associated with multiple neutrino events observed by the IceCube, Baikal, Baksan, and KM3NeT neutrino telescopes while it was flaring in the $\gamma$-ray, X-ray, ultraviolet and optical bands. We present a detailed study of this peculiar blazar to investigate the temporal and spectral changes in the multi-wavelength emission when the neutrino events were observed. The analysis of Swift-XRT snapshots reveal a flux variability of more than a factor 2 in about $5\times10^3$ seconds during the observation on Dece (...)
The blazar PKS 0735+178 is possibly associated with multiple neutrino events observed by the IceCube, Baikal, Baksan, and KM3NeT neutrino telescopes while it was flaring in the $\gamma$-ray, X-ray, ultraviolet and optical bands. We present a detailed study of this peculiar blazar to investigate the temporal and spectral changes in the multi-wavelength emission when the neutrino events were observed. The analysis of Swift-XRT snapshots reveal a flux variability of more than a factor 2 in about $5\times10^3$ seconds during the observation on December 17, 2021. In the $\gamma$-ray band, the source was in its historical highest flux level at the time of the arrival of the neutrinos. The observational comparison between PKS 0735+178 and other neutrino source candidates, such as TXS 0506+056, PKS 1424+240, and GB6 J1542+6129, shows that all these sources share similar spectral energy distributions, very high radio and $\gamma$-ray powers, and parsec scale jet properties. Moreover, we present strong supporting evidence for PKS 0735+178 to be, like all the others, a masquerading BL Lac. We perform comprehensive modelling of the multiwavelength emission from PKS 0735+178 within one-zone lepto-hadronic models considering both internal and external photon fields and estimate the expected accompanying neutrino flux. The most optimistic scenario invokes a jet with luminosity close to the Eddington value and the interactions of $\sim$ PeV protons with an external UV photon field. This scenario predicts $\sim 0.067$ muon and antimuon neutrinos over the observed 3-week flare. Our results are consistent with the detection of one very-high-energy neutrino like IceCube-211208A. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more