Authors:
Shapiro, Aurélie
Abstract:
Global forests play a crucial role in regulating global climate by actively storing and sequestering carbon. Despite efforts to mitigate climate through international efforts, human-caused forest disturbance and forest-related greenhouse gas emissions continue to rise. Deforestation and forest degradation are two different processes affecting global forests. Deforestation is a clearly defined conversion or removal of forest cover, while degradation can be more subtle, temporary, variable, and therefore difficult to detect. Forest degradation is (...)
Global forests play a crucial role in regulating global climate by actively storing and sequestering carbon. Despite efforts to mitigate climate through international efforts, human-caused forest disturbance and forest-related greenhouse gas emissions continue to rise. Deforestation and forest degradation are two different processes affecting global forests. Deforestation is a clearly defined conversion or removal of forest cover, while degradation can be more subtle, temporary, variable, and therefore difficult to detect. Forest degradation is generally identified as a functional reduction in the capacity of forests to provide ecosystem services, that does not qualify as a change in land cover or forest clearing. That means no clear reduction of the forest area, but rather a decrease in quality and condition. This change, like deforestation can still be associated with significant reductions in above-ground biomass and therefore considerable greenhouse gas emissions. Estimates of carbon emissions from forest degradation and disturbance range anywhere from 12-20% of all emissions emitted globally with values varying widely because of a lack of uniform definition or method for quantifying degradation, the broad number of influencing factors, and uncertainty in biomass estimates. The area affected by forest degradation could in fact be much larger than that of deforestation, which is already estimated to be an area about the size of Iceland every year. The REDD+ mechanisms of financing emissions reductions to mitigate climate change require robust, transparent and scalable methods for quantifying degradation, along with a quantification of associated direct drivers. Furthermore, as degradation often precedes deforestation, timely monitoring and assessment of forest degradation and changes in drivers can provide crucial early warning to engage interventions to keep forests intact, benefitting nature and biodiversity as well as the livelihoods, health and well-being of millions of people around the world. This research proposes methods for consistent, repeatable and scalable satellite-derived indicators for identifying and quantifying different types of forest degradation and its causes to inform future risk and policy scenarios.
(Read More)