2018 •
Sparks et al, Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy: in vivo data
Authors:
Sparks, Hugh, Mr. Steven Hooper, Dr. Erik Sahai
Abstract:
Murine xenografts were prepared by intraperitoneal (IP) injection of IGROV-1 cancer cells. IGROV-1 cells were grown to 80% confluence before being trypsinized and re‑suspended in PBS at a concentration of cells per ml. cells were injected into ICRF nude mice. After 14 days post-injection, the presence of intraperitoneal tumors was confirmed by bioluminescence imaging. Briefly, an IVIS bioluminescence imaging system was used to image isoflurane anesthetized mice. 100 µl of D-luciferin (luciferase substrate) at 30mg ml-1 was injected IP 10 min (...)
Murine xenografts were prepared by intraperitoneal (IP) injection of IGROV-1 cancer cells. IGROV-1 cells were grown to 80% confluence before being trypsinized and re‑suspended in PBS at a concentration of cells per ml. cells were injected into ICRF nude mice. After 14 days post-injection, the presence of intraperitoneal tumors was confirmed by bioluminescence imaging. Briefly, an IVIS bioluminescence imaging system was used to image isoflurane anesthetized mice. 100 µl of D-luciferin (luciferase substrate) at 30mg ml-1 was injected IP 10 minutes before recording of bioluminescence images. The presence of peritoneal tumors was confirmed if bioluminescence signals from the peritoneum were above background noise 10-30 minutes after D‑luciferin injections. Following confirmation of tumors, in vivo fluorescence imaging experiments were carried out after 21 days. To study differences in drug uptake between intravenous or intraperitoneal delivery, prior to imaging mice were subject to IP or IV doxorubicin-based chemotherapy for 1.5, 3 or 24 hours. Imaging involved terminal procedures, mice were anesthetized then peritoneal tumors were exposed by minor surgery and inspected with the CEM. All animal model procedures were approved by The Francis Crick Institute Biological Ethics Committee and UK Home Office authority provided by Project License 70/8380. Murine xenografts were prepared by intraperitoneal (IP) injection of IGROV-1 cancer cells. IGROV-1 cells were grown to 80% confluence before being trypsinized and re‑suspended in PBS at a concentration of cells per ml. cells were injected into ICRF nude mice. After 14 days post-injection, the presence of intraperitoneal tumors was confirmed by bioluminescence imaging. Briefly, an IVIS bioluminescence imaging system was used to image isoflurane anesthetized mice. 100 µl of D-luciferin (luciferase substrate) at 30mg ml-1 was injected IP 10 minutes before recording of bioluminescence images. The presence of peritoneal tumors was confirmed if bioluminescence signals from the peritoneum were above background noise 10-30 minutes after D‑luciferin injections. Following confirmation of tumors, in vivo fluorescence imaging experiments were carried out after 21 days. To study differences in drug uptake between intravenous or intraperitoneal delivery, prior to imaging mice were subject to IP or IV doxorubicin-based chemotherapy for 1.5, 3 or 24 hours. Imaging involved terminal procedures, mice were anesthetized then peritoneal tumors were exposed by minor surgery and inspected with the CEM. All animal model procedures were approved by The Francis Crick Institute Biological Ethics Committee and UK Home Office authority provided by Project License 70/8380. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more