2021 •
The quantum solitons atomtronic interference device
Authors:
Juan Polo, Piero Naldesi, Anna Minguzzi, Luigi Amico
Abstract:AbstractWe study a quantum many-body system of attracting bosons confined in a ring-shaped potential and interrupted by a weak link. With such architecture, the system defines atomtronic quantum interference devices harnessing quantum solitonic currents. We demonstrate that the system is characterized by the specific interplay between the interaction and the strength of the weak link. In particular, we find that, depending on the operating conditions, the current can be a universal function of the relative size (...) AbstractWe study a quantum many-body system of attracting bosons confined in a ring-shaped potential and interrupted by a weak link. With such architecture, the system defines atomtronic quantum interference devices harnessing quantum solitonic currents. We demonstrate that the system is characterized by the specific interplay between the interaction and the strength of the weak link. In particular, we find that, depending on the operating conditions, the current can be a universal function of the relative size between the strength of the impurity and interaction. The low lying many-body states are studied through a quench dynamical protocol that is the atomtronic counterpart of Rabi interferometry. With this approach, we demonstrate how our system defines a two level system of coupled solitonic currents. The current states are addressed through the analysis of the momentum distribution.(Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more