2021 •
Behavior of Totally Positive Differential Systems Near a Periodic Solution
Authors:
Chengshuai Wu, Lars Grune, Thomas Kriecherbauer, Michael Margaliot
Abstract:
A time-varying nonlinear dynamical system is called a totally positive differential system (TPDS) if its Jacobian admits a special sign pattern: it is tri-diagonal with positive entries on the super- and sub-diagonals. If the vector field of a TPDS is T-periodic then every bounded trajectory converges to a T-periodic solution. In particular, when the vector field is time-invariant every bounded trajectory of a TPDS converges to an equlbrium. Here, we use the spectral theory of oscillatory matrices to analyze the behavior near a periodic solutio (...)
A time-varying nonlinear dynamical system is called a totally positive differential system (TPDS) if its Jacobian admits a special sign pattern: it is tri-diagonal with positive entries on the super- and sub-diagonals. If the vector field of a TPDS is T-periodic then every bounded trajectory converges to a T-periodic solution. In particular, when the vector field is time-invariant every bounded trajectory of a TPDS converges to an equlbrium. Here, we use the spectral theory of oscillatory matrices to analyze the behavior near a periodic solution of a TPDS. This yields information on the perturbation directions that lead to the fastest and slowest convergence to or divergence from the periodic solution. We demonstrate the theoretical results using a model from systems biology called the ribosome flow model. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more