2021 •
Causal inference for semi-competing risks data
Authors:
Daniel Nevo, Malka Gorfine
Abstract:
An emerging challenge for time-to-event data is studying semi-competing risks, namely when two event times are of interest: a non-terminal event time (e.g. age at disease diagnosis), and a terminal event time (e.g. age at death). The non-terminal event is observed only if it precedes the terminal event, which may occur before or after the non-terminal event. Studying treatment or intervention effects on the dual event times is complicated because for some units, the non-terminal event may occur under one treatment value but not under the other. (...)
An emerging challenge for time-to-event data is studying semi-competing risks, namely when two event times are of interest: a non-terminal event time (e.g. age at disease diagnosis), and a terminal event time (e.g. age at death). The non-terminal event is observed only if it precedes the terminal event, which may occur before or after the non-terminal event. Studying treatment or intervention effects on the dual event times is complicated because for some units, the non-terminal event may occur under one treatment value but not under the other. Until recently, existing approaches (e.g., the survivor average causal effect) generally disregarded the time-to-event nature of both outcomes. More recent research focused on principal strata effects within time-varying populations under Bayesian approaches. In this paper, we propose alternative non time-varying estimands, based on a single stratification of the population. We present a novel assumption utilizing the time-to-event nature of the data, which is weaker than the often-invoked monotonicity assumption. We derive results on partial identifiability, suggest a sensitivity analysis approach, and give conditions under which full identification is possible. Finally, we present non-parametric and semi-parametric estimation methods for right-censored data. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more