Abstract:
Forest structure and function are subject to risks of growth declines from intensified drought and frequent extreme events related to climate warming. Knowledge of tree growth declines will help anticipate future responses of forests to climate change. In this study, we investigated tree growth declines over the last four centuries in a juniper forest on the eastern Tibetan Plateau. By analyzing the radial growth trajectories of individual trees, we identified two events of intense growth decline, one in 1817–1830 and the other in 1969–1999 (...)
Forest structure and function are subject to risks of growth declines from intensified drought and frequent extreme events related to climate warming. Knowledge of tree growth declines will help anticipate future responses of forests to climate change. In this study, we investigated tree growth declines over the last four centuries in a juniper forest on the eastern Tibetan Plateau. By analyzing the radial growth trajectories of individual trees, we identified two events of intense growth decline, one in 1817–1830 and the other in 1969–1999 over the past four centuries. The intensity of the recent decline was unprecedented in the period under study. Ring-width chronology showed a positive correlation with self-calibrating Palmer Drought Severity Indices and a negative correlation with mean monthly temperatures in May and June. The recent intensified growth decline may have been due to temperature-induced frequent droughts in the study area. Our findings suggest that trees in this juniper forest may face a higher risk of growth decline and even mortality under continued climate warming. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more