2011 •
Estimation of vegetation clumping index using MODIS BRDF data
Authors:
Jan Pisek, Jing M. Chen, Tiit Nilson
Abstract:
The foliage clumping index quantifies the degree of the deviation of leaf spatial distribution in the canopy from the random case. It is of comparable importance for ecological models as the leaf area index for quantifying radiation interception and distribution in plant canopies. Previously, an improved angular index named normalized difference between hotspot and darkspot was proposed for retrieving the clumping index using multi-angle remote sensing data. Global maps of clumping index have been derived successfully from multi-angular Polariz (...)
The foliage clumping index quantifies the degree of the deviation of leaf spatial distribution in the canopy from the random case. It is of comparable importance for ecological models as the leaf area index for quantifying radiation interception and distribution in plant canopies. Previously, an improved angular index named normalized difference between hotspot and darkspot was proposed for retrieving the clumping index using multi-angle remote sensing data. Global maps of clumping index have been derived successfully from multi-angular Polarization and Directionality of Earth Reflectance (POLDER) data at ∼6 km resolution. In this article, we investigate whether it is feasible to derive the clumping index at 500 m resolution with the 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function model parameters product. The results are compared with an assembled set of field measurements from 63 different sites, covering five continents and diverse biomes. (Read More)
We have placed cookies on your device to help make this website and the services we offer better. By using this site, you agree to the use of cookies. Learn more